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Regular Measures and Inner Product Spaces 
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We present some results concerning the properties of regular finitely additive 
measures on the set of all splitting subspaces of a (real or complex) inner product 
space S and their relation to completeness of S. These results are generalized for 
abstract quadratic spaces to be orthomodular. Moreover, some open problems 
are presented. 

1. I N T R O D U C T I O N  

One of  the basic problems related to the mathematical foundations of  
quantum mechanics (Birkhoff and von Neumann,  1936; Mackey, 1963; von 
Neumann,  1932) is the description of  probabili ty measures (called states in 
physical terminology) on the set of  experimentally verifiable propositions 
regarding a physical system [or psychology of the human brain, computer  
science, or sociometry; for details, see Grib et al. (1989)]. The set of  proposi- 
tions forms an orthomodular ,  orthocomplemented poset which is called a 
quantum logic. In the more restrictive setting a quantum logic is assumed 
to be a complete or thomodular  lattice (Varadarajan, 1968). 

An important  interpretation of a quantum logic is via the set L ( H )  of 
all closed subspaces of  a real or complex Hilbert space H, with an inner 
product  ( . ,  .), which is an orthomodular ,  complete lattice with respect to 
the set-theoretic inclusion and the natural orthocomplementation 
i : M ~ - ~ M •  for each y~M}.  In this model, a finite, 
countably additive measure is any mapping m : L ( H ) ~  [0, ~ )  such that 

oo 
re(V,~176 M, )  = 
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for any sequence of mutually orthogonal subspaces {Mi} of L(H). The 
cornerstone of this description is a famous result of Gleason (1957) which 
says that countably additive measures on L(H), where H is a separable 
Hilbert space and dim H # 2 ,  are in a one-to-one correspondence with posi- 
tive operators T of the trace class on H via 

m(M)=tr(TP~), M~L(H) (I) 

where pM denotes the orthoprojector from H onto M. This result has been 
generalized also for nonseparable Hilbert spaces by Eilers and Horst (1975), 
Drisch (1979), and Maeda (1980), and for bounded signed measures by 
Sherstnev (1974). 

If the assumption of the completeness of H is omitted, we obtain a more 
general class of real or complex inner product spaces which can be used as 
axiomatic models. In this connection two families of closed subspaces play 
an important role: If S is an inner product space, then by E(S) we denote 
the set of all splitting subspaces of S, i.e., of all subspaces M of S for which 
the projection theorem M + M • S holds. This is an orthocomplemented, 
orthomodular poset containing {O) and S and also any complete subspace 
and therefore, all finite-dimensional subspaces of S. 

By F(S) we denote the set of all orthogonally closed subspaces M of 
S, i.e., of all subspaces M of S for which M =  M •177 It is well known that 
F(S) is an orthocomplemented, complete lattice, and E(S)~_F(S). 

An interesting algebraic characterization of the completeness of S is due 
to Amemiya and Araki (1966-1967), which says that S is complete iff F(S) 
is orthomodular, or, equivalently, ifE(S) = F(S). Dvure~enskij (1988) proved 
that S is complete iff E(S) is a a-logic, i.e., if E(S) possesses the join of 
any sequence of mutually orthogonal splitting (it suffices one-dimensional) 
subspaces of S. 

The measure-theoretic completeness characterizations were begun by 
Hamhaiter and Ptfik (1987), showing that a separable S is complete iff F(S) 
possesses at least one probability measure. This result for E(S), F(S), and 
other families of subspaces for a general S, as well as for signed measures 
and frame functions, has been generalized by Dvure6enskij (1989a,b), 
Dvure~nskij and Migik (1988), Dvure~enskij and Pulmannovfi (1988, 1989), 
and Dvure~enskij et al. (1990). Dvure~enskij (1991, and to appear) proved 
that S is complete iff F(S) possesses at least one regular finitely additive 
measure, i.e., a measure which is approximable from below by finite-dimen- 
sional subspaces. 

On the other hand, any E(S) possesses plenty of regular finitely additive 
measures even for incomplete S. 

Therefore, in this paper, we shall investigate conditions on systems of 
regular finitely additive measures on E(S) which will guarantee the complete- 
ness of S. It will be shown that for completeness criteria we must take plenty 
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of regular finitely additive measures. Moreover, it will be shown that these 
results can be generalized to more general quadratic spaces, i.e., inner prod- 
uct spaces not necessarily over the field of  real or complex numbers. These 
spaces have been studied, e.g., by Keller (1980, 1990), Gross (1990), Gross 
and Keller (1977), Piziak (1990), and Kalmbach (1990). This space is said 
to be orthomodular if E(S) = F(S). Using the measure-theoretic characteriz- 
ations, we shall investigate the orthomodularity of quadratic spaces. 

2. R E G U L A R  M E A S U R E S  

Let S be a real or complex inner product space. A mapping m" E(S) ---, R 
such that 

m ( ~  Mi)=i~im(Mj) (2) 

whenever {Mi : ieI} is a system of  mutually orthogonal subspaces of E(S) 
for which the join Oi~tMi exists in E(S), is said to be a charge, signed 
measure, or completely additive signed measure if (2) holds for any finite, 
countable, or arbitrary index set I [the latter case means that the real net 
{ ~ o m ( M i ) ' D  is a finite subset of I} converges in R with the limit 
m((~h~xM~)]. I f  m attains only positive values, we say that m is afinitely 
additive measure, measure, or completely additive measure, respectively, 
according to the cardinality of I. A charge is said to be Jordan if it can be 
represented as a difference of two positive finitely additive measures. 

Let P(S) be the set of all finite-dimensional subspaces of S. A charge 
m on E(S) is said to be P(S)-regular if given Me E(S) and given e > 0 there 
exists a finite-dimensional subspace N of M such that 

Im(M n N• < e (3) 

[We recall that if N ~ M ,  N, MeE(S),  then MnNIeE(S ) . ]  
All the above notions can be defined in the same way also for the case 

of  all orthogonally closed subspaces of S. 
Let S denote the completion of S and let ~b be a mapping from E(S) 

into E ( ~  defined via q~ ( M ) =  M, where )I~ denotes the completion of M. 
Then (i) ~b is injective; (ii) ~b (M • = ~b (M) • MEE(S), where •  denotes 
the orthocomplementation in S; (iii) ~b (M)_L ~b (N) whenever M_L N, and 
q~(M v N)= d?(M) v q~(N). 

Therefore, if m, is a charge (finitely additive measure) on E ( ~ ,  so is 
m o q~: M~--~m(M), MeE(S),  on E(S). However, we have (Dvure~enskij 
and Pulmannovfi, 1988, 1989) that for incomplete S, m o ~b is never com- 
pletely additive even if m is on E(S). In particular, let T be a nonzero 
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Hermitian operator of trace class in S; then the mapping (1) is always a 
completely additive charge on E(S) and for incomplete S, the map 

m(n)  = tr(TP~), M~E(S) (4) 

is only a Jordan, P(S)-regular charge (DvureEenskij, 1991, and to appear). 
Moreover, the following generalization (Dvure~enskij, 1991, and to appear) 
of the Aarnes (1970) theorem holds .  

Theorem 2.1. Every Jordan charge m on E(S), dim S # 2 ,  can be 
uniquely expressed as a sum of a Jordan P(S)-regular charge ml and a 
Jordan charge m2 vanishing on P(S). Any Jordan charge on E(S) is P(S)- 
regular iff it is of the form (4) for some Hermitian trace operator T in S. 

We recall that if m is positive, so are m, and m2. 
Let fI(S),  f~r(S), and Dca(S) denote the sets of all states, P(S)-regular 

states, and completely additive states, respectively, on E(S). The set f~(S) 
is always a nonempty convex set: For any unit vector xeS, the mapping 

mx(M) = IIxMII 2, MeE(S) (5) 

where x=xM+x~l, x~eM, x~leM l, is a P(S)-regular state on E(S). In 
an analogous way, for any unit vector x e S  the mapping 

mx(M) = lle~xll 2, M~E(S) (6) 

is a P(S)-regular state on E(S). 
By J(S), Jr(S), J,,(S), and Jc,(S) we denote the sets of all Jordan 

charges, Jordan P(S)-regular charges, Jordan signed measures, and Jordan 
completely additive signed measures on E(S), respectively. Analogously, we 
define W(S), Wr(S), W~(S), and Wc~(S) as the sets of all charges, e(S)- 
regular charges, signed measures, and completely additive signed measures, 
respectively, on E(S). The following assertion holds. 

Theorem 2.2. The following conditions hold: 

1. S is complete iff f~c,(S) ~ ~.  
2. S is complete iff Wc~(S) r {0}. 
3. If dim S =  oo, then J~(S) = W~,(S). 
4. J~(S) =J~o(g) = W~o(g) if dim S =  oo. 

Proof. Condition 1 has been proved in Dvure6enskij and Pulmannovfi 
(1988) and Condition 2 in Dvure~enskij and Pulmannov/t (1989). Condition 
3 follows from the results of Dorofeev and Sherstnev (1990), which have 
shown that any completely additive measure, when S is an infinitely dimen- 
sional Hilbert space, is bounded; and Condition 4 follows from Dvure6enskij 
(to appear). �9 
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We note that for any S, dim S > 3 ,  J(S) is a proper subset of  W(S). 
As has been shown in Dvure~enskij (to appear), let ~/ be any additive 
discontinuous functional from R into R, and let T be a nonconstant Hermi- 
tian operator of  trace class in 5'. Then the mapping m: E(S) -4 R defined via 

m(M) = ~(tr(TP~r)), M~E(S) (7) 

is a finitely additive charge which is not Jordan. 
A nonempty subset ~ '  of  ~ ( S )  is said to be a strong system of states if 

the proposition "if  m(M)= 1, then m(N)= 1, meJr implies M~N.  If  ~t' 
is a strong system of states, then by Gudder (1966), (i) ~t' is order determin- 
ing, i.e., M ~ N i f f m ( M ) < m ( N )  for all m E ~ ' ;  (ii) for any MV=0 there is a 
state m e ~ '  such that re(M)= 1. 

A subset ~ '  of  f~(S) is convex if for all m, he  J / a n d  for any t, 0 < t <  1, 
tm+(1-t )m~Jr A state m is a pure state of  ~ '  if the property m =  
tmj + (1 - t)m2 for 0 < t < 1 implies ml =m2 =m. If  Jt'_~ f~(S), then Con(Jg)  
denotes the convex hull of Jr'. 

For  a unit vector xeS  ( x e ~ ,  let Px denote the one-dimensional sub- 
space of  S ($3 generated by x, and by P~ we denote the orthoprojector from 
S onto Px. 

Lemma 2.3. Let Ext(S)  denote the set of all pure states on E(S) and 
let ~ ( 5  e) be the set of  all states of the form (6) on E(S). Then any pure 
state is either a P(S)-regular  state or a state vanishing on P(S), whenever 
dim S # 2, and 

~ ( S e )  ~_ Ext(Se) (8) 

Proof Let m be a pure state on E(S). By Theorem 2.1, m =  
tm~ + (1 - t ) m2 ,  where 0 <  t <1,  m~ is a P(S)-regular state, and m2 is a state 
vanishing on P(S). Therefore, t~ {0, 1}. 

Now we prove (8). Let x be a unit vector in 5' and define rnx via (6). 
Suppose that m~= tm~ + (1 - t)m2, for some 0<  t<  1. Due to Theorem 2.1, 
ml =In,l +ml2 and m2 =m~+m~, where mJl , m{ are P(S)-regular finitely addi- 
tive measures on E(S) and m~, m~ are finitely additive measures vanishing 
on P(S). 

Assume that mtj and m~ are determined by trace operators/ '1 and T2 in 
S, so that there are systems of  orthonormal vectors {ei} and {fj}_in S and 
nonnegative numbers {Ai}, {Itj} such that ml(M)=~iZilleMe~ll 2 and 
m{(M)  = p ~  2 Ej/~jll ~-II , MeE(S). 

The density of S in S gives a sequence of unit vectors {x,} of  S such 
that I I x - x ,  II--*0. Hence, 

lim m~(P~,) = lim tr {[t T~ + (1 - t)T2] P'~"} = tr {[t T~ + (1 - t)T2] P~} = 1 
n t~ 
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which gives tr(T~ p x ) =  1= tr(T2px). Therefore 

~.;l(x, ei)l 2= 1 = Z PJl(x,J))l 2 
i y 

This is possible iff there is a unique i and a uniquej  such that ]../i= 1 : ~j  and 
Pe, = Px = P~, so that mx= rn~ = m2. �9 

Any pure state m~ on E(S), where x is a unit vector in S, is said to be 
a purely pure state on E(S),  and by Extp(S) we denote the set of  all purely 
pure states on E(S). 

Lemma 2.4. A nonempty subset ~t' of  f l (S) ,  d i m S # 2 ,  is a strong 
system iff Extp(S) __. Jr'. 

Proof. It is evident that Extp(S) is a strong system of  states on E(S). 
Therefore, ~g containing all purely pure states is a strong system, too. 

Conversely, suppose that Jr '  is a strong system. Let x be any unit vector 
of  S. Then there is a state rne Jr '  such that m(Px)= 1. Let m=ml +m2 be a 
decomposition of  m into a regular part mj and a part m2 vanishing on P(S). 
Then m(Px)=ml(Px) = 1, so that m2=0. Hence, there exists a sequence of 
orthonormal vectors {ui} of S and nonnegative numbers {Ai} such that 
m(M)=~i)~llP~ugll 2. Therefore, there is a unique u~ such that P,,=Px, 
which means that m = m~. �9 

From Lemma 2.3 we have now the following obvious completeness 
criterion. 

Criterion 2.5. S is complete iff any P(S)-regular pure state on E(S), 
dim S ~ 2, is a purely pure state. Then they are completely additive. 

3. STATES W ITH S U P P O R T  

A splitting subspace M of  S is said to be a support of  a state m if 
m(N)=O iff N_I_M. If a support of m exists, it is unique. It is known 
(Dvure~enskij, 1990) that any P(S)-regular state on E(S) of a Hilbert space 
S, dim S-~ 2, is always completely additive, and, therefore, by Maeda (1980), 
has a support. For  incomplete S, this assertion is invalid, as has been shown 
in Dvure6enskij (1991). In this section, we shall give completeness criteria 
using P(S)-regular states with supports. 

We recall that by the dimension of a splitting subspace M we mean the 
cardinality of  any maximal orthonormal system (MONS, for short) in M. 

Lemma 3.1. If  a state m on E(S) possesses a support M, then 
dim M_< No. 
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Proof Let m be a state on E(S) with a support. Express m in the form 
m =ml +m2, where ml is a P(S)-regular part, and m2 is a part vanishing on 
P(S). Since m2(Px)=0 for any unit vector xeS,  we conclude that ml #0.  
There is a sequence of orthonormal vectors {xi} in S and a sequence of 
positive numbers {~;} such that ml = ~-~i Z~rnxi. 

Suppose that M is a support of m; then m~(M-L)=0 and for any i, 
x;eiQ. Let {yj ;jeJ} be a MONS in M. Then for any i, ~ I(xg, yj)l 2< oo, 
so that there is an at most countable subset J0 ~-J such tha t  (x~, y j )=  0 for 
all i and alljeJ\Jo, which means that J=Jo. [] 

Proposition 3.2. For any incomplete S, f~(S) has a P(S)-regular pure 
state which has no support in E(S). 

Proof The incompleteness of S implies that, due to (Dvure6enskij 
(1989b), Gross (1990), Gudder (1975), and Gudder and Holland (1975) 
there is a MONS {y;} in S which is not an orthonormal basis (ONB, for 
short) in S. Therefore, {y~} can be completed by elements of ~' \S to be an 
ONB in S. In other words, there always exist two orthonormal vectors x 
and y such that xeS-'~S and yeS. 

Now we claim that a P(S)-regular pure state mx has no support in 
E(S). Actually, if M were a support of rex, then for any zeM, zv~O, we 
would have (z, x) ~0,  and for any ueM • u• On the other hand, for y we 
have the decomposition y =y] +y2, where Yl e M  and y2eM • Calculate 0 = 
(x, y) = (x, yl) + (x, y2) = (x, yl) -r a contradiction; consequently, mx has 
no support in E(S). [] 

Remark 3.3. If an incomplete S has the property that for any nonzero 
xeS \S  there is a unit vector yeS, yd_x, then mx has no support in E(S). 

Proposition 3.4. If  dim S >  No, then S is complete if any P(S)-regular 
state on E(S) has a support in E(S). 

Proof The necessity is evident. For sufficiency let us suppose that S is 
incomplete. Then for any unit vector x in ~ ' \S and for any MONS {Yi} in 
S we have ~i I(Yi, x)[ 2 < 1, which means that at most countably many vectors 
yls  are not orthogonal to x. Therefore, there is a unit vector y in S, yd_x. 
The rest now follows from Remark 3.3. [] 

Theorem 3.5. If dim S # 2 ,  the following statements are equivalent: 

1. S is complete. 
2. Any P(S)-regular state on E(S) has a support in E(S). 
3. For  any sequence (xi} of orthonormal vectors in S and all positive 

numbers {Z~}, Y'j Zi= 1, the state ~'~ A.imx, has a support in E(S). 
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4. For  any infinite sequence {xi} of orthonormal vectors in S, the state 
Y~i m.~,/2 ~ has a support in E(S). 

Proof It is clear that 1=~2=~3~4. Now we prove that Condition 4 
gives 1. 

First of all we prove that if m =Y~i Aimx,, where {xi} is an orthonormal 
system in S and {;1.~} are positive numbers such that ~ ,~= 1, then m has a 
support in E(S) iff @~ P~ieE(S). Moreover, in this case (~i Pxi is a support 
of  m. 

Indeed, i fm is a support of  m, then mx,(M • =0 for all i, so that x~J_M • 
i.e., xieM for any i. If  there is an xeM, xlx~ for all i, then m(Px) =0,  so 
that P~_I_M, which means that {x~} is a MONS in M, and M = @~ P~,. 

On the other hand, if M=f~P~,eE(S) ,  then r e ( N ) = 0  implies 
mx,(N) = 0 or all i, and, therefore, xgLN, so that MLN. 

Using this property, we see that Condition 4 asserts that for any 
sequence of  orthonormal vectors {x~}, Gi Px, is a splitting subspace of S. In 
view of  the criterion in Dvure6enskij (1988), this is equivalent to the com- 
pleteness of S. [] 

Example 3.6. Let H be a separable Hilbert space with an orthonormal 
basis {ei}. Let f =  ~;~ ~ ei/2 i and let S be a linear subspace generated by 
{f, e2, ea . . . .  }. Then me, is a P(S)-regular pure state on E(S) having no 
support in E(S). 

4. EXPECTATION FUNCTIONALS 

In this section, we give a completeness criterion using expectation 
functionals. For  this and the following sections, we introduce the next 
notions from quantum logic theory. 

By a quantum logic L we mean a poser L with a partial ordering _<, 
maximal and minimal elements 0 and 1, respectively, and a unary operation 
•  L such that (i) (a• • a for any a eL; (ii) a v a l =  1 for any a eL; 
(iii) ifa<_b, then b•177 (iv) i fa<b 1, then avbeL;  (v) ifa<b, then b = 
a v (b ^ a z) (orthomodular law). Two elements a, b of  L are orthogonal and 
we write a• if a<_b • A logic L which is closed with respect to the join of 
any sequence of mutually orthogonal elements is said to be a o--logic. 

For  any inner product space S, E(S) is a logic, and E(S) is a o--logic 
iff S is complete (Dvure6enskij, 1988). 

A state is a mapping m: L--* [0, 1] such that m(1)= 1 and m(avb)= 
m(a) +m(b) for alb. By f~(L) we denote the set of  all states on L; in general, 
it can be empty. As for E(S), we define the notions as o--additive state and 
completely additive state. 
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A mapping x from the Borel sets B(R) into L such that (i) x ( ~ ) =  0, 
(ii) if E c~ F =  ~ ,  then x(E)_Lx(F) and x (Eu  F ) = x ( E ) v  x(F), and (iii) 
x(R\E)=x(E)  1 for any EeB(R), is said to be an observable. If for an 
observable x we have that if {Ei} is a sequence of  mutually disjoint subsets 
of  B(R), then x (Ui  E~)=V;  x(Ei), then x is said to be a a-observable. An 
observable is said to be bounded if there is a compact set C such that x(C) = 
1. I f  x is an observable and m is a state on L, then m o x is a probability 
state on B(R), and E(x; m) denotes the expectation value of an observable 
x in a state m defined via E(x; m) = SR t dm o x(t). Some basic properties of  
E(x;m) are investigated in Riittimann (1985). 

The following lines are very close to so-called Gleason-type problems 
in the context of  quantum logics, as has been observed in R/ittimann (1989). 

Let dr' be a nonempty convex poset of ~q(L) and define J(M) := lin(Jt'). 
Then ~ '  is a base of  a generating cone in J ( J t ' )  and the pair ( J ( J [ ) ,  ~//) is 
a base-norm space (Riittimann, 1984). The corresponding base norm is 
denoted by I1" I1,~,. We now follow the general theory of  base-normed and 
order unit normed spaces (Alfsen, 1972): If  we order the Banach dual J*(~r 
via f < g ,  f ,  gEJ*(J/g), i f f f ( m ) < g ( m )  for all me J/l, then ( J * ( ~ / ) ,  _<, 1.~,), 
where l~r is the unique linear functional with l~,t : ~t' ~ { 1 }, is an order unit 
normed space, i.e., an Archimedean ordered vector space with the order unit 
1~,. For  the norm in J*(J/ / ) ,  also denoted by If " ILce, we have 

Ilftl.~,~ = sup{lf(m)t : mE.g}  = inf(t  > 0 : f~  t [ -1  ~,, 1.~]} 

Note that -Ilfll~r" l z,_<f_< [IflL~,r �9 1~,, thus [ - 1 ~ ,  1~] is the norm-closed 
unit ball in J * ( J / ) .  

With any element p EL we associate a linear functional e~,(p) on J ( J t ' )  
as follows: e.ze(p)(m) :=m(p) ,  me Jr/. Since e~/l(p)(Jr ~ [0, 1], we conclude 
that e.it(p) ~ [0, l~r ]. 

An affine functional on ~r the range in [0, 1] c R  is called a counter 
on ~ ' .  This functional admits a unique extension to a linear functional 
on J ( ~ ) ,  is I1" I[.a-continuous, and belongs to the order interval [0, 1.a]. 
Conversely~ the restriction of  an element of [0, 1.re] to J / i s  a counter on ~t'. 

For  example, if J /  is a convex subset of ~(L) ,  and x is a bounded 
observable, then E ~ : J I  ~ R defined via E~(m)= E(x; m), m~Jg, can be 
uniquely extended to a II" I[n(L)-continuous linear functional on J(f~(L)). 

We say that a counter on a convex subset ~ '  of  f~(L) is called expecta- 
tional, respectively a-expectational, if it is the restriction to J / o f  the expecta- 
tional functional of  some bounded observable, respectively a-observable. 

Now we formulate the following completeness criterion. 

Theorem 4.1. S is complete iff there is a strong system ~t' of  states on 
E(S), dim S ~ 2 ,  such that any counter on Con( J [ )  is a-expectational. In 
this case Jr '  ___ f~ , (S) .  
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Proof Let S be complete, and let ~ be the set of all completely additive 
states on E(S). Then all elements of J ( J r  are expressible by (4), where T 
is any Hermitian trace operator. It is well known that J*(~t') is the set of 
all Hermitian operators on S because all observables on E(S) (for a com- 
plete, S) are in a one-to-one correspondence with the set of all Hermitian 
operators in 5'. 

According to Theorem 3.5 of Rfittimann (1985), we have Jr 
and E(S) is a complete lattice, which, in view of criteria in Dvure~enskij 
(1988, 1989b), means the completeness of S. �9 

Remark 4.2. According to Lemma 2.4, ~ / h a s  to contain all purely pure 
states on E(S). 

5. QUADRATIC SPACES 

The results of the previous section can be generalized to more general 
inner product spaces as real or complex ones. 

Let K be a *-field with an involution �9 : K-~ K which satisfies (x + y)* = 
x*+y*,  (xy)*=y*x*, x**=x for all x, ysK. Let �9 be a bilinear form on a 
(left-) vector space S over a *-field K, i.e., a mapping � 9  S • S --, K which 
satisfies 

O(ax + fly, z)= aO(x, z)+ riO(y, z) 

O(x, ay + flz) =O(x, y)a* + O(x, z)ri* 

for all x,y, zsS, a, risK. The bilinear form �9 is Hermitian if O(x,y) = 
O(y, x)* for all x, y s K  and �9 is anisotropic if O(x, x ) = 0  implies x=O. 

The couple (S, O), where �9 is a Hermitian anisotropic bilinear form, 
is said to be a quadratic space. Two vectors x and y of S are said to be O- 
orthogonal if O(x, y) =0. For any M~S,  M~:= {xeS: O(x,y)=O for all 
yeM}. We define the set of all O-splitting subspaces of S, E.(S) = 
{M ~ S: M +  M • = S}, and the set of  all O-orthogonally closed subspaces of 
S, Fr = {M~_S: M•177 Then E.(S)~_F.(S), and F . (S )  is a com- 
plete, irreducible, orthocomplemented, atomic lattice with the covering prop- 
erty which is not orthomodular, in general. E,(S) is always a quantum logic 
which is not a o'-logic, in general. 

We recall that for any nonzero vector xsS,  by Px we mean a one- 
dimensional subspace of S spanned over x. 

We say that a quadratic space (S, O) is orthomodular iff Er = Fr 
In view of the criterion of Amemiya and Araki (1966-1967), a real or com- 
plex inner product space S is orthomodular iff S is complete. 

Now we present an orthomodularity criterion generalizing that in 
Dvure~enskij (1988). 
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Theorem 5.1. A quadratic space (S, ~ )  is orthomodular iff for any 
system of mutually ~-orthogonal vectors {xi} of S, t~)i Px, eE.(S). 

Proof The necessity is evident. Suppose the sufficiency, i.e., {x;} -L~ is 
an element of  E.(S) for any system of  mutually O-orthogonal elements {xi} 
of S. Let M be a given element of Fa, and choose a maximal set of 
nonzero orthogonal vectors in M, {x;}. Then Mo := {x~}•177 Let x be 
any arbitrary vector of M. Then x=xl +x2, where xl ~M0 and x 2 ~ m o  ~ . The 
maximality of {xi} gives x2=0, and x=xjeMo, so that MeE.(S), and 
F.(S)=E.(S).  II 

The measure-theoretic criterion of the orthomodularity of a quadratic 
space (Dvure6enskij et al., 1990) shows that under some conditions, (S, q)) 
is orthomodular if F.(S) possesses at least one state with a one-dimensional 
support. 

Below we give a generalization of Theorem 4.1. 

Theorem 5.2. A quadratic space (S, q~) is orthomodular whenever there 
is a convex, strong system ~ '  of states on E.(S) such that any counter on 
J / i s  o--expectational. In this case, any state of J t  is completely additive. 

Proof Following Theorem 3.5 of Riittimann (1985), we conclude that 
any state of J/ / is  completely additive, and E,~(S) is a complete lattice, which 
in view of Theorem 5.1 means the orthomodularity of (S, q~). I 

6. OPEN PROBLEMS 

In this section, we present some unsolved problems of measure theory 
on E(S), and we give partial solutions to them. 

We say that a net {ma} of charges on E(S) converges weakly to a 
charge m on E(S) if lima ma(M)=m(M) for any MeE(S). Dvure~enskij 
(1978) proved the Nikodj~m theorem for o--logics: if {m,} is a sequence of 
signed measures on L with a finite limit re(a)= lima m,(a) for all aeL, then 
m is a signed measure on L, too. Jajte (1972) showed this result for a 
sequence of signed measures of the form (1) for a separable Hilbert space. 
Using the results of Dorofeev and Sherstnev (1990) and Dvure~enskij (1978), 
we can reformulate the result of Jajte as follows. 

Theorem 6.1 (Nikod~m theorem). The space Wc~(H), dim H =  ~ ,  is 
weakly sequentially complete for any Hilbert space H. 

Proof. Let {m,} be a fundamental weak sequence from Wc~(H) with a 
limit m. By Dorofeev and Sherstnev (1990) we have that any m, is of the 
form (1) for some Hermitian operator T, of trace class in H. In view of 



900 Dvure~enski] 

Dvure~enskij (1978) m is countably additive. It is clear that there is a Hermi- 
tian operator T in H such that m,(Pz) = (T~f,f)  --* (Tf, f )=m(Pz) for any 
unit vector f in H. 

Let { f : i~ l }  be an arbitrary ONB in H. Then H =  Oi~tP~,  and for 
any n > 1, there is an at least countable subset I, of I such that m,(p~) = 0 
for ieI \ I , .  Put Io= U,~=, i ,  and Ho=(~ieroPfi. Then m,(H)=m,(Ho) for 
all n, so that m(H)=m(Ho), and m(P~)=O for all ieI\Io. Hence, 

m(H) = m(Ho) + m(H~) = m(Ho) = Y. m(Py~) 
iEIo 

= ~ m(ey,)+ ~ m(el,)=Y. ( T f i , f ) = t r  T=tr(TP n) 
i E [  0 i E l \ l o  i ~ [  

In an analogous way we have re(M)= tr(TpM), M~E(H). �9 

We note that the Nikod~,m theorem is true for any Hilbert space if we 
consider the space of all charges of the form (1); moreover, for {m.} with 
the limit m we have the uniform complete additivity with respect to n; see 
Dvure~enskij (1978). 

Problem 6.1. Is the space W~(S) (J~(S), fL(S)) weakly sequentially 
complete for any incomplete S? 

Let m be a charge on E(S). We say that m (i) is bounded if 

sup{lm(M)l: M~E(S)) < 

(ii) P( S )-bounded if 

(iii) P~(S)-bounded if 

sup{Ira(M)[ : M~P(S)} < oo 

sup{Im(M)l: M~PI(S) } < c~ 

where P~(S) is the set of all one-dimensional subspaces of S. 
The formula (7) gives an example of a Pl(S)-unbounded charge on 

E(S). An interesting result of Dorofeev and Sherstnev (1990) says that for 
a Hilbert space H, any element of Wc,(H) is bounded [and, consequently, 
of the form (1)] whenever dim H =  ~ .  

Problern 6.2. Is any P(S)-regular charge on E(S), dim S =  ~ ,  neces- 
sarily bounded? 

The partial answers are presented below. 

Theorem 6.2. Any Pl(H)-bounded, P(H)-regular charge on E(H) is a 
Jordan completely additive signed measure on E(H). 
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Proof Our assumptions guarantee that on any finite-dimensional sub- 
space M of  H there is a bounded bilinear form tM on M • M such that 
tM(X, X)=m(Px) for any unit vector xeM.  Therefore, there is a bounded 
bilinear form t on H • H such that  t(x, x) = m(Ix)  for any unit vector x in 
H. Hence, there is a Hermitian operator  T in H such that t(x, x)= (Tx, x), 
xeH.  

Let T= T + -  T - ,  where T +, T -  are positive operators and let H= 
H + O H - ,  where H + and H -  are positive and negative with respect to T. 
Therefore, the restrictions m + := m [ E(H +) and m -  := - m  [ E(H - ) are posi- 
tive P(H+) - and P ( H - ) - r e g u l a r  charges on E(H +) and E ( H - ) ,  
respectively. 

The regularity o f m  + gives that for any M e E ( S )  there is a nondecreas- 
ing sequence of finite-dimensional subspaces { M,} of  M such that m + (M)  = 
lim, m+ (M,)=lim,  tr(T+ pM")>_ O for any MeE(H+). Consequently, by 
Dvure~enskij (1990), m + is completely additive and m+(M)=tr (T+PY) ,  
SO that T + is a trace operator  in H +, hence, in H, too. Because the same is 
true for m -  and T - ,  we conclude that T is a trace operator in H. 

For  any orthoprojector pM w e  have [tr(TPY)[ < 0% which means that 

[m(M)l = lira m(M.) < l im[ t r (T+P M") + tr(T_ pM.)] 

< t r  T + + t r  T -  =tr lT] 

where {M,} is a suitable sequence of  finite-dimensional, nondecreasing sub- 
spaces of  M. The last assertion means that m is necessarily bounded. 

Moreover,  

m(H) = m ( H  +) + m ( H - )  = m + ( H  +) - r e - ( H - )  

= t r (T  +) - t r ( T -  ) = tr T =  tr(TP H) 

I f  we repeat all our above considerations for any Hilbert space 
M~E(H),  we find a Hermitian operator T M : M ~  M of trace class in M 
such that m(M)=tr(TM)=tr(TMPM). Choose an ONB {ei} in M. Then 
m( M ) = ~i ( TMei , ei ) = ~ ( Te~ , e~ ) = tr( TpM ). 

In other words, m is completely additive. 

Problem 6.3. Is Theorem 6.2 valid for any E(S)?  

Theorem 6.3 (Aarnes theorem). Any signed measure m on E(H) ,  
dim H =  ~ ,  can be uniquely expressed as a sum of a P(H)-regular ,  Jordan 
charge (hence, completely additive) and a signed measure vanishing on any 
separable subspace of  a Hilbert space. 
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Proof. Using the result of Dorofeev and Sherstnev (1990), we can show 
that m is a P t (H)-bounded  charge. In an analogous manner as in the proof  
of  Theorem 6.2, we have a Hermitian operator T in H such that m(Px) = 
(Tx, x) for each unit vector xeH. 

We claim that Tis  a trace operator. Express T in  the form T =  T § - T -  
and H = H + ~ H  -, where T+:H+-+ H + and T-:H--+ H-. Let { f  : iEI} 
be any ONB in H + and {ej :jEJ} be an ONB in H - .  For  any at most 
countable index subset F of  I we have, due to the o--additivity 

Y', ( f i , f )  = Y', ( T f i , f )  = Z m(Pfi) =m ~ Pf, 
iEr ieF i~F \ i ~ F  / 

so that ~i~t ( T + f i , f )  < oo and 

Y, ( T + f i , f i ) =  Y. (T+ f~,f) + Y, (T+ej, ej)< oo 
i~l i~I j ~ J  

Hence, T + is a trace operator in H;  analogously, we proceed with T - ,  which 
entails that T is a trace operator, too. 

Define a P(H)-regular  Jordan charge (= completely additive signed 
measure) m~ via (1) and putting m2 = m - m~, we obtain the decomposition 
of  m in question. 

The uniqueness of  the decomposition is now evident. II 

Remark 6.4. If the dimension of  H is an infinite nonmeasurable cardi- 
nal, then m is necessarily completely additive on E(H). Theorem 6.3 is 
invalid for charges; see formula (7). The author does not know whether any 
signed measure on E(H), dim H =  0% is necessarily bounded. 

Any E(S) can be embedded in a natural way into E ( ~ ,  so that E(S) 
can be considered as a sublogic of  the complete logic E(S). There appears 
a natural question of  the extensibility of states on E(S) to states on E(;~). 
Due to Theorem 2.1, this problem is reduced to the following. 

Problem 6.4. Is it possible to extend any state on E(S) vanishing on 
P(S) to a state on E(S)? 

It is clear that this extended state must vanish on P ( ~ .  This problem 
is equivalent to the following one. 

Proposition 6.5. Any state on E(S), dim $4:2, can be extended to a 
state on E(S) iff f~,(S) is dense in a weak topology of states in f~(S). 

Proof Suppose that f~r(S) is weakly dense in f~(S). Then for any state 
m on E(S) there is a net of P(S)-regular states {m,} such that m(M)= 
lim~ m~(M) for any MeE(S). Consequently, there is a net {T~} of von 
Neumann operators in S such that m~(M)= tr(T~P~), MEE(S) for any a. 
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Since the weak topology of  states corresponds to the product  topology 
in [0, 1 ]E~s), respectively in [0, 1] e t~) for the case of  E(S) ,  of  compact  spaces 
[0, 1], we conclude that  there is a subnet {T~,} of  a net {T~} and a state 
moef~(S) such that mo(M)=lima, tr(T~,PU), MeE(S) .  It  is evident that 
molE(S)=m. 

Conversely, let any mef~(S) have an extension, m0 say, to a state on 
E(S).  Since Dca(5') is weakly dense in D(S) ,  we find a net (T~} of von 
Neumann  operators in S such that tr(T~P ~t) --*too(M) for any MeE(S) .  
Hence, t r(T~P ca) for any MeE(S) .  [] 

A charge m on E(S) has a Hahn decomposition if there are two mutually 
orthogonal  splitting subspaces S + and S - ,  S + @ S - = S ,  such that 
mIE(S+)>O and mIE(S- )<O.  For  Jca(S) [=Wc~(S)], dim S =  oo, any of 
its elements has a Hahn decomposition. 

Problem 6.5. Has any element of  Jr(S),  dim S =  0% a Hahn decomposi- 
tion? What  is their connection to the completeness? 

We say that a state m on E(S) is a Jauch-Piron state if for any 
M, NeE(S )  with r e ( M ) =  1 = m ( N ) ,  there exists a PeE(S) ,  P~_M, P ~ N  
such that re(P)  = I. Any state with a support  is a Jauch-Piron one. 

Problem 6.6. Is any P(S)-regular  state a Jauch-Piron one? What  is 
their connection to the completeness of  S? 
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